INDIAN SCHOOL MUSCAT

DEPARTMENT OF MATHEMATICS

VECTOR ALGEBRA

CLASS-12

1) Find the magnitude of the following vector:- $\vec{a}=2 \hat{\imath}-7 \hat{\jmath}-3 \hat{k}$
2) Find the unit vector in the direction of the vector $\vec{a}=\hat{\imath}+\hat{\jmath}+2 \hat{k}$.
3) Find the vector joining the points $P(5,3,0)$ and $Q(-1,-2,-4) Q$ to P.
4) Find the position vector of the midpoint of the vector joining the points $P(, 3-2,0)$ and $Q(1,-1,2)$.
5) Find the projection of the vector $\vec{a}=2 \hat{\imath}+3 \hat{\jmath}+2 \hat{k}$ on the vector $\vec{b}=\hat{\imath}+2 \hat{\jmath}+\hat{k}$
6) If a is a unit vector and $(\vec{x}-\vec{a}) \cdot(\vec{x}+\vec{a})=8$, then find $|\vec{x}|$
7) Find the area of a triangle having the points $\mathrm{A}(1,2,3), \mathrm{B}(2-1,1)$ and $\mathrm{C}(-1,2,3$,$) as$ its vertices.
8) Find the area of a parallelogram whose adjacent sides are determined by the vectors $\mathbf{a}=\hat{\imath}-\hat{\jmath}+3 \hat{k}$ and $\boldsymbol{b}=2 \hat{\imath}-7 \hat{\jmath}+\hat{k}$.
9)The two adjacent sides of a parallelogram are $2 \hat{\imath}-4 \hat{\jmath}+5 \hat{k}$ and $\hat{\imath}-2 \hat{\jmath}-3 \widehat{k}$.

Find the unit vector parallel to its diagonal. Also , Find its Area.
9) Given $|\vec{a}|=13,|\vec{b}|=5$, and $\vec{a} \cdot \vec{b}=60$. find $|\vec{a} x \vec{b}|$.
10) Find λ and μ if $(2 \hat{\imath}+6 \hat{\jmath}+27 \hat{k}) x(\hat{\imath}+\lambda j+\mu k)=\overrightarrow{0}$
11) If \vec{a} and \vec{b} are Unit vectors Inclined at an angle θ, then prove that $\sin \frac{\theta}{2}=\frac{1}{2}|\hat{a}-\hat{b}|$.
12) If with reference to the right handed system of mutually perpendicular unit vectors $\hat{\imath}, \hat{\jmath}$ and $\hat{k}, \vec{\alpha}=3 \hat{\imath}-\vec{\jmath}, \vec{\beta}=2 \hat{\imath}+\hat{\jmath}-3 \hat{k}$, then express $\vec{\beta}$ in the form $\vec{\beta}=\overrightarrow{\beta_{1}}+\overrightarrow{\beta_{2}}$ where $\overrightarrow{\beta_{1}}$ is parallel to $\vec{\alpha}$ and $\overrightarrow{\beta_{2}}$ is perpendicular to $\vec{\alpha}$.
13) $\vec{a}=\hat{\imath}+4 \hat{\jmath}+2 \hat{k}, \vec{b}=3 \hat{\imath}-2 \hat{\jmath}+7 \hat{k}, \vec{c}=2 \hat{\imath}-\hat{\jmath}+4 \hat{k}$, Find a vector \vec{d} which is perpendicular to both \vec{a} and \vec{b} \& $\vec{c} \cdot \vec{d}=15$
14. If $\vec{a}, \vec{b}, \vec{c}$ are three vectors such that their magnitudes are 3,4 and 5 respectively and $\vec{a}+\vec{b}+\vec{c}=\overrightarrow{0}$ then find the value of $\vec{a} \cdot \vec{b}+\vec{b} \cdot \vec{c}+\vec{c} \cdot \vec{a}$
15. Find τ if the vectors $\vec{a}=\hat{\imath}+\widehat{3 \jmath}+\hat{k}, \vec{b}=\widehat{2 \imath}-\hat{\jmath}-\hat{k}$ and $\vec{c}=\tau \hat{\imath}+\widehat{7 \jmath}+3 \hat{k}$ are coplanar.
16. If $\vec{a}=\hat{\imath}-2 \hat{\jmath}+3 \hat{k}$ and $\vec{b}=2 \hat{\imath}+3 \hat{\jmath}-5 \hat{k}$, then find $\vec{a} x \vec{b}$ and verify $\vec{a} x \vec{b}$ is perpendicular to \vec{a}.
17. Find the value of λ, if the points $A(-1,4,-3), B(3, \lambda,-5), C(-3,8,-5)$ and $D(-3,2,1)$ are coplanar.

