

INDIAN SCHOOL MUSCAT

DEPARTMENT OF MATHEMATICS

VECTOR ALGEBRA

CLASS-12

- 1) Find the magnitude of the following vector:- $\vec{a} = 2\hat{\imath} 7\hat{\jmath} 3\hat{k}$
- 2) Find the unit vector in the direction of the vector $\vec{a} = \hat{i} + \hat{j} + 2\hat{k}$.
- 3) Find the vector joining the points P(5,3,0) and Q(-1,-2,-4) Q to P.
- 4) Find the position vector of the midpoint of the vector joining the points P(,3-2,0) and Q(1,-1,2).
- 5) Find the projection of the vector $\vec{a}=2\hat{\imath}+3\hat{\jmath}+2\hat{k}$ on the vector $\vec{b}=\hat{\imath}+2\hat{\jmath}+\hat{k}$
- 6) If a is a unit vector and $(\vec{x} \vec{a})$. $(\vec{x} + \vec{a}) = 8$, then find $|\vec{x}|$
- 7) Find the area of a triangle having the points A(1,2,3), B(2-1,1) and C(-1,2,3,) as its vertices.
- 8) Find the area of a parallelogram whose adjacent sides are determined by the vectors $\mathbf{a} = \hat{i} \hat{j} + 3\hat{k}$ and $\mathbf{b} = 2\hat{i} 7\hat{j} + \hat{k}$.
- 9)The two adjacent sides of a parallelogram are $2\hat{i} 4\hat{j} + 5\hat{k}$ and $\hat{i} 2\hat{j} 3\hat{k}$. Find the unit vector parallel to its diagonal. Also, Find its Area.
- 9) Given $|\vec{a}| = 13$, $|\vec{b}| = 5$, and $\vec{a} \cdot \vec{b} = 60$. find $|\vec{a} \times \vec{b}|$.
- 10) Find λ and μ if $(2\hat{\imath} + 6\hat{\jmath} + 27\hat{k}) x (\hat{\imath} + \lambda j + \mu k) = \vec{0}$
- 11) If \vec{a} and \vec{b} are Unit vectors Inclined at an angle θ , then prove that $\sin\frac{\theta}{2} = \frac{1}{2}|\hat{a} \hat{b}|.$
- 12) If with reference to the right handed system of mutually perpendicular unit vectors \hat{i}, \hat{j} and $\hat{k}, \vec{\alpha} = 3\hat{i} \vec{j}$, $\vec{\beta} = 2\hat{i} + \hat{j} 3\hat{k}$, then express $\vec{\beta}$ in the form $\vec{\beta} = \vec{\beta_1} + \vec{\beta_2}$ where $\vec{\beta_1}$ is parallel to $\vec{\alpha}$ and $\vec{\beta_2}$ is perpendicular to $\vec{\alpha}$.
- 13) $\vec{a} = \hat{\imath} + 4\hat{\jmath} + 2\hat{k}$, $\vec{b} = 3\hat{\imath} 2\hat{\jmath} + 7\hat{k}$, $\vec{c} = 2\hat{\imath} \hat{\jmath} + 4\hat{k}$, Find a vector \vec{d} which is perpendicular to both \vec{a} and $\vec{b} \& \vec{c} \cdot \vec{d} = 15$
- 14. If $\vec{a}, \vec{b}, \vec{c}$ are three vectors such that their magnitudes are 3, 4 and 5 respectively and $\vec{a} + \vec{b} + \vec{c} = \vec{0}$ then find the value of $\vec{a}, \vec{b} + \vec{b}, \vec{c} + \vec{c}, \vec{a}$ 15. Find τ if the vectors $\vec{a} = \hat{\imath} + \hat{\imath}_{l} + \hat{k}$, $\vec{b} = \hat{\imath}_{l} - \hat{\jmath} - \hat{k}$ and $\vec{c} = \tau\hat{\imath} + \hat{\imath}_{l} + 3\hat{k}$ are coplanar.
 - $\frac{1}{2}$
 - 16. If $\vec{a} = \hat{\imath} 2\hat{\jmath} + 3\hat{k}$ and $\vec{b} = 2\hat{\imath} + 3\hat{\jmath} 5\hat{k}$, then find $\vec{a} \times \vec{b}$ and verify $\vec{a} \times \vec{b}$ is perpendicular to \vec{a} .
 - 17. Find the value of λ , if the points A(-1,4,-3),B(3, λ ,-5), C(-3,8,-5) and D(-3,2,1) are coplanar.